

 i

Play with FILE Structure
Yet Another Binary Exploitation Technique

An-Jie Yang (Angelboy)

angelboy@chroot.org

Abstract	

To fight against prevalent cyber threat, more mechanisms

to protect operating systems have been proposed.

Specifically, approaches like DEP, ASLR, and RELRO are

frequently applied on Linux to hinder memory corruption

vulnerabilities. In other words, it is more difficult for

adversaries to exploit bugs to undermine the system security.

 In this paper, we will propose a new attack technique that

exploits the FILE structure in GNU C Library (Glibc), and

introduce how to circumvent the protection adopted by

modern operating systems. We will demonstrate techniques

to break data protections and launch remote code execution.

Moreover, we explore the methodology to utilize different

FILE structures for attack – the so called File Stream

Oriented Programming.

Despite the new mitigations in the latest version of Glibc,

we will show we can still abuse the FILE structure using our

approach.

 ii

Table	of	Contents	

Abstract i	

Table of Contents ... ii	

Chapter 1 Introduction .. 1	

Chapter 2 Background ... 2	

2.1 File stream ... 2	

2.2 FILE structure ... 3	

2.3 FILE stream related function 5	

Chapter 3 Exploitation of FILE structure 8	

3.1 Abuse the file structure to code execution 8	

3.2 File-Stream Oriented Programming 11	

3.3 Vtable verification in FILE structure 14	

3.4 Make FILE Structure great again 16	

3.4.1 Arbitrary memory reading ... 16	

3.4.2 Arbitrary memory writing ... 18	

3.4.3 Control the world ... 20	

3.4.4 No File operation case .. 20	

3.4.5 Another bypass method .. 23	

3.4.6 Another platform ... 23	

Chapter 4 Conclusion ... 24	

Reference 25	

 1

Chapter	1	Introduction	

 In the past, memory corruption such as buffer overflow is a common

vulnerability that gives attackers a chance to gain control. At the beginning,

the program has no protection so that the attack exploited very easy. After a

while, DEP (Data Execution Protection) and ASLR (Address space layout

randomization) have been present and implemented. But the attacker does not

show weakness, they developed some attack method such as GOT hijack and

ROP (Return-Oriented Programming). After a time, the defense also

developed Full RELRO and Stack Guard to prevented GOT hijack and stack

overflow. It effectively blocked most attack. Therefore, FILE structure

became a good target to gain control execution flow. We could forge the

FILE structure and virtual function table which contains functions to lead file

stream related function such as "fopen" to execute our code. In this paper, we

will use a simple case to show you how to use FILE structure to exploit a

binary on Linux platform and use the feature of FILE structure to do oriented

programming.

 In the modern, more and more protection added to GNU C Library. FILE

structure was also added virtual function protection to validate if the virtual

function call is valid. We will introduce the new protection in GNU C library

and demonstrate how to make FILE structure exploit great again and then

control instruction pointer again and again.

 2

Chapter	2	Background	

2.1	 	 File	stream	

File stream is very important concept in C and a common, logical interface

to the various devices that comprise the computer.

When we use a raw IO function in C program to read or write a file,

kernel would not read or write the file directly. Instead, kernel would handle

a kernel buffer, and read a lot of data in the file to the buffer. Then it would

be copied to your destination address in user space as you want to read or

write. The purpose is to reduce the number of hard disk read/write. In would

increase the performance in the file operation.

Glibc is also added a similar mechanism called file stream. File stream

is a higher-level interface on the primitive file descriptor facilities. As C

defines the term "file", it can refer to a disk file, the screen, the keyboard, a

port, a file on tape, and so on. Although files differ in form and capabilities,

all streams are the same. The stream provides a consistent interface and to

the programmer one hardware device will look much like another.

A stream is linked to a file using an open operation. Characters that are

written to a stream are normally accumulated and transmitted asynchronously

 3

to the file in a block, instead of appearing as soon as they are output by the

application program. A stream is disassociated from a file using a close

operation.

In other word, when we use fread or fwrite to read or write a file. It

would create a buffer in the user space. Just like system call, it would also

read a lot of data from kernel buffer to stream buffer.

After that, data would be copied to your destination as you want to read or

write. The goal is to reduce the number of system call, and it also reduce the

number of times system traps to kernel.

2.2 FILE structure

FILE structure is a very complex structure. In this paper, we will

introduce some important element in FILE structure.

 4

 _flags in the file structure is used to record the attribute of File stream

such as read only, append and so on. It also shows the status of the file

buffering status.

 Stream buffer pointer can be divided into three parts, read buffer

(_IO_read_ptr, _IO_read_end, _IO_read_base), write buffer

(_IO_write_ptr, _IO_write_end, _IO_write_base) and reserve

buffer(_IO_buf_base, _IO_buf_end). The pointer ending is ptr is point to

current buffer position. The pointer ending is base is point to the begin of the

buffer and the pointer ending is end is point to end of buffer.

 _fileno is a file descriptor from the file which you open. It’s return from

system call open. Especially 0,1 and 2 is standard input, output and error.

 _IO_file_plus is an extension of FILE structure. It added a virtual

function table but FILE does not have. In the recent GNU C Library version,

 5

FILE stream uses the file plus structure. Stdin, stdout and stderr are also

using the structure. For all file operations are through virtual function table

in FILE structure. If you want to read data from file, it would call the virtual

function instead of direct call into original function. That is used for

overriding for some special case such as wide character.

Interestingly, every FILE structure is associated with a linked list. The head

of linked list is called _IO_list_all and the next pointer is called _chain

2.3 FILE stream related function

In this part, we will take a few common functions in the file stream to

demonstrate how the file stream works.

The workflow of fopen :

 First of all, GNU C library would allocate a memory space for FILE

structure when you call fopen. Then it would initialize element in the FILE

Allocate	FILE	structure

Initial	the	FILE	structure

Open	file

 6

structure, such as _flag and virtual function table. It very like the constructor

in C++ object. After that, it would insert the FILE structure into the linked

list of FILE stream. Eventually, it would call system call open and then fill in

the fileno.

The workflow of fread:

From here on, it would start using virtual function for file operations.

At the beginning of fread, if the stream buffer is not created we called it

NULL, it would use _file_doallocate in virtual function table to allocate a

new buffer for FILE stream. _file_doallocate would use malloc/mmap or

your defined memory allocator to allocate the stream buffer. Then fread

would use system call to read a lot of data a from file to the stream buffer.

Finally, it would copy data which you want to read from stream buffer to

destination.

Allocate	buffer	if	buffer	is	NULL

Read	data	to	the	stream	buffer

Copy	data	from	stream	buffer	to	destination

 7

The workflow of fwrite:

fwrite is very similar to fread, but the function is opposite to each

other. It also allocated a stream buffer if it is NULL at first. Then copy user

data to the stream buffer from source and then write data from stream buffer

to the file only if the stream buffer is filled or flush the stream.

The workflow of fclose:

fclose is the opposite of fopen. It would delete the structure from the

linked list of file stream at first. Then flush the stream buffer, make sure

everything is written to the file. Finally, close the file and release the

memory space.

Allocate	buffer	if	buffer	is	NULL

Copy	user	data	to	the	stream	buffer

Write	data	from	steram	buffer	to	file

Unlink	the	FILE	structure

Flush	&	Release	the	stream	buffer

Close	the	file

Release	the	FILE	strucure

 8

Chapter	3	Exploitation	of	FILE	structure	

3.1 Abuse the file structure to code execution

There are many good targets in FILE structure. The best one is virtual

function table. If we can control the table, the we can control the flow. We

use a simple case to explain how to control the flow with FILE structure.

 It’s a buffer overflow vulnerability in the sample code. It does not check

length of user’s input so that we can overwrite the FILE pointer on the BSS

section.

 Assume the address of buffer contains our input is 0x6009a0. We

overwrite the FILE pointer with buffer address. In theory, if the program

executed to fclose, it would take the buffer as FILE pointer and we wound

control instruction pointer.

 9

 However, when we run it, we found that is does not crash at call

instruction, but a compare instruction, and the crash value controllable. After

debugging it with GNU C library source code to see what happened in fclose.

We found a segmentation fault at _IO_acquire_lock. It is a lock structure

pointer in the File structure which should be pointed to a writable memory

and used to prevent race condition in multithread environment. As a

consequence, if we want to overwrite virtual function table to gain control,

we have to construct it.

 We used a global buffer filled with zero and reconstructed our payload

so that the lock pointer could point to the buffer.

 10

 The final payload would look like the diagram above. 0x88 is offset of

lock, we can use debugger or GNU C Library source code to get the value.

After do that, the program would crash at instruction of call and the value of

register is our input. That is, we control the program counter.

 Another interesting, stdin, stdout and stderr which used in

standard I/O stream related function are also a FILE structure in

GNU C library. Therefore, we can overwrite the global variable in

GNU C library to control the execution flow.

 11

3.2 File-Stream Oriented Programming

File-Stream Oriented Programming called FSOP use FILE structure to do

oriented programming. It similar to ROP, COP and so on. ROP drives the

control flow by gadgets that all end in a return instruction. COP use call

instruction. FSOP uses virtual function table with call in the FILE structure.

If we want to do FSOP, we need to control the linked list of file stream and

find a powerful function called _IO_flush_all_lockp in somewhere we can

easily trigger. As a result, chain which is the next pointer in FILE structure

and _IO_list_all which is the head of linked list, both are very important. If

we can control these two pointers, then we can control the flow over and over

again.

 _IO_flush_all_lockp is used to flush all file stream in the linked list at

the end of program or the program terminates.

For example, it will be called when GNU C library aborts, exits and executes

“main return”. The goal of _IO_flush_all_lockp is to prevent all data from

being written to the file when the program ends. In this paper, we will take

abort routine as our example.

 12

 When the GNU C library detects some memory corruption problem, it

would enter to the abort routine. In GNU C library abort routine, it would

print some error messages, then check file stream if need to flush and call

virtual function in the file structure. After do that, it would call exit system

call to terminate the program. We simplified the source code of

_IO_flush_all_lockp.

 We can see the iterator fp is assigned _IO_list_all which the head of

linked list of FILE structure. The condition is to check the FILE stream if

need to flush. If the condition is satisfied, it would call function in the virtual

funcrtion table. Then assigned fp to next file structure in the linked list. It

would repeat until next pointer is NULL. Therefore, if we can overwrite the

_IO_list_all with our buffer which we can control and trigger abort routine,

we can control the flow again and again.

 13

For example, if we used some memory corruption vulnerability to

overwrite _IO_list_all and construct the linked list as shown in the diagram

and then trigger about routine. If the condition in _IO_flush_all_lockp is

satisfied, it would call “foo” function in our fake virtual function table and

the parameter of the function is this pointer which points to itself. It is very

same as virtual function call in C++. After call the virtual function in the

first FILE structure, the control flow would drive to process next FILE

stream and call next virtual function if the condition is satisfied.

 14

The result would look like the screen shot shown here, we get the abort

message as well as a shell.

3.3 Vtable verification in FILE structure

 Unfortunately, because more and more attacks use virtual function table

to control the flow, there is a protection added to virtual function table in

latest GNU C library since version 2.24(release at 2017). It would check the

address of virtual function before virtual function call. If the virtual function

is invalid, it would terminate directly.

 15

 In the source code of vtable verification, it would validate if the virtual

function table is in _IO_vtable section. If it’s not, it would check if the

virtual function table permits virtual function call.

There are two checks, the first one is to check if it is for compatibility.

In case this libc copy is in a non-default namespace, we always need to

accept foreign vtables because there is always a possibility that FILE *

objects are passed across the linking boundary. The second one is to check if

it’s for shared library from dl_open.

It’s is very hard to bypass this two check. For the first one, it has a pointer

guard. Pointer guard is very similar to stack guard that is generated at the

beginning of the program and we cannot predict it. It would exclusive OR

with pointer when we want to use it. For the second one, if we can control

dl_open_hook , then we can bypass it. But if you can control the value, you

can also control other good target such as malloc_hook in GNU C library.

 16

Accordingly, directly bypass the vtable verification is very hard.

3.4	 	 Make FILE Structure great again

 Because directly control virtual function table is difficult. We can

change the target from virtual function table to other elements. After reading

source in GNU C library, we found if we can overwrite FILE structure and

use fread, fwrite or other stream related function with FILE structure, we can

do arbitrary memory reading or arbitrary memory write. To simplify the

workflow, we will use fread and fwrite as our example. In fact, other stream

related function can also do it.

3.4.1 Arbitrary memory reading

 fwrite : Under normal usage, fwirte is used to write data to file. Our

goal is to write data in memory to stdout. If we want to do that, we must

meet these conditions below.

1. Set the _fileno to the file descriptor of stdout

In our case, we want to show in stdout so we use stdout as our

output. It also can be set to socket.

2. Set _flag &~ _IO_NO_WRITE

In the _flag value, we want to write so we must not need NO Write

flag.

3. Set _flag |= _IO_CURRENTY_PUTTING

 17

 In the source code of fwrite internal, we can see whether we cannot set

_IO_CURRENTLY_PUTTING, it would adjust the stream buffer pointer

and it would affect the results we want. Then it would call _IO_do_write. But

it just calls virtual function but not call system call write directly

4. Set _IO_write_base and _IO_write_ptr to memory address which

you want to read.

GNU C library would take the buffer as stream buffer.

5. Let _IO_read_end equal to _IO_write_base

We can see that we must set _IO_read_end equal to _IO_write_base.

Otherwise, it would also adjust the stream buffer and affect our result we

want.

 This is a sample code to verify it. If we do nothing on FILE, it’s just a

program that write data your input to file

 18

After modify value of element in the file structure, you can see that it reads

your input and then writes some data called secret in the memory.

Just like the picture below, our input is hello, but the final result was printed

out with “secret”. That is, We can write any data in the memory.

In other word, if we can control all data in file structure, we can use it to

bypass ASLR.

3.4.2 Arbitrary memory writing

 fread: It is very similar to fwrite. We also need to meet these conditions

above.

1. Set the _fileno to file descriptor of stdin

In our case, we want to read from stdin so we change it to file

descriptor to stdin. It also can replace with socket if you want to

read from socket.

2. Set _flag &~ _IO_NO_READS

We do not need the flag _IO_NO_READS. Because we want to use

read to write data to memory.

3. Set _IO_read_base equal to _IO_read_ptr

 19

If we not set it, the GNU C library would think that there is still

data in your buffer that must be written first. And we can’t write our

data to destination.

4. Set the _IO_buf_base and _IO_buf_end to memory address which

you want to write and the size of buffer(_IO_buf_end -

_IO_buf_base) must be larger than size of fread.

Because you need to let it think that buffer has enough space to put

you data.

 We also use a sample code to verify it. If we do nothing on file, it just

reads data from file and put an empty buffer called msg.

 20

 After modify value of element and set msg as our stream buffer in the

file structure. If you execute it, you can find that it’s waiting for your input.

That is, fread is reading from stdin but not from file. And then after input

some strings like the screen shot below, it prints out your input but not empty

string. In other word, we can do arbitrary memory writing.

3.4.3 Control the world

 After you can do arbitrary memory reading or writing , you can control

the flow easily. You can overwrite some variables contain function pointer.

For instance, you can write global offset table or hook series. By the way,

you can not only use fread and fwrite but also use any I/O related functions

which use FILE structure such as fget, fput and so on.

3.4.4 No File operation case

 What if there is no any file operation in the program? Actually, we can

use stdin, stdout and stderr with virtual function table protection as our

target.

This is very common use of standard IO related function such as put, printf

or scanf in a program. It would use stdin, stdout or stdin in GNU C library.

We take two scenarios to show how to use stdin and stdout to exploit a

process.

 21

l Information leak

 The first one, assume we have some memory corruption on the heap and

use any stdout related function in the program.

How can we do to bypass ASLR in full protection?

 We can use some heap exploit technique to overwrite _flag and partial

overwrite _IO_write_base. For example, we can use fastbin attack to

partially overwrite unsorted bin if we don’t have any address, it would

allocate a chunk on stdout so that we can overwrite it. It is very similar to

house of Roman, but our target is file structure.

After do that, if we call some stdout related function. It would print some

memory data in glibc or heap. Because _IO_write_base have been changed to

the front of the stdout and It will print the content of stdout. There are many

interesting values which contain some glibc addresses and heap addresses in

stdout. Therefore, we can use the technique to bypass ASLR again.

 22

l Code execution

 The second one is code execution. Assume, there are some stdin related

functions in the program such as scanf, fgets and so on. Besides, stdin is

unbuffered. That will make the stdin function look like no stream buffer.

But in facts it has a one-byte buffer called short buffer in the stdin structure

internal at first. IO_buf_base and _IO_buf_end is point to it. If we have some

memory corruption on heap, we can use unsorted bin attack which is very

common in heap exploitation to overwrite _IO_buf_end with a point. The

point called unsorted bin is behind the stdin structure. As a result, we create

a large stdin buffer in the glibc again.

 As a result, we create a large stdin buffer in the glibc again. Therefore,

it would use the large buffer as stream buffer while we call some stdin

related function. For instance, if we call scanf(“%d”), it will call

read(0,buf_base,size of stdin buff). That is, it can overwrite many global

 23

variables in glibc such as malloc_hook. Finally, if you trigger malloc later,

you can control the flow again!

3.4.5 Another bypass method

 There are some another bypass verification. If the virtual function use

_IO_strfile structure, it would invoke another virtual function table without

virtual function table verification so we can use this function and forge

another virtual function table, we can control program counter again.

3.4.6 Another platform

 How about Windows? File structure does not have any virtual function

table on Windows. But it also has stream buffer pointer. So, we can corrupt it

to achieve arbitrary memory reading and writing.

 24

Chapter	4	Conclusion	

 File structure is a good target for binary exploitation. We show that it

can be used to arbitrary memory read and write, control the PC and do

oriented programming. But I think that it can be used to another exploit

technology such as arbitrary free or unmap. It’s also very powerful in some

unexploitable case.

 25

Reference	

The file stream: https://www.le.ac.uk/users/rjm1/cotter/page_74.htm

Abusing the FILE structure:

https://outflux.net/blog/archives/2011/12/22/abusing-the-file-structure/

House of Roman:

https://gist.github.com/romanking98/9aab2804832c0fb46615f025e8ffb0bc

The GNU C Library:

https://www.gnu.org/software/libc/

Use _IO_str_jumps bypass vtable verification:

https://dhavalkapil.com/blogs/FILE-Structure-Exploitation/

Use IO_wstr_finish bypass vtable verification:

https://tradahacking.vn/hitcon-2017-ghost-in-the-heap-writeup-ee6384cd0b7

